I

MIRANTIS

Orchestration (Heat)

Heat Module Objectives

Learn Heat architecture
Review basics of Heat format
Understand Autoscaling in OpenStack

> MIRANTIS

OpenStack Orchestration

Template-driven engine that allows application

developers to describe and automate the deployment of
infrastructure

> MIRANTIS

What Instructor can talk about:
Companies typically deploy OpenStack to run applications on top of it. Some of those

applications have a complex architecture that in physical world may require multiple

servers, SAN storage, load balancer, multiple networks, etc. For example, when
deploying web servers, typical infrastructure looks like several web-servers behind the

load balancer, multiple DB servers with replication, etc.
To replicate the similar infrastructure in the cloud the user would need to create

multiple OpenStack resources with some relationships between them. In example

above, that would be a separate VM for each of the web and DB servers, neutron LB
pool with VIP and Health Monitor.

Heat provides an ability to describe that environment as a template and simplify and
automate its creation.

Orchestration vs. Configuration Management

Orchestration is a sub-category of automation, concerned with

coordination of multiple component:

For example, servers, networks, volumes, etc..
Orchestration is a “higher form” of automation
Not just simple or lower-level tasks, but multilayer applications

Configuration Management is automation of server

configuration:
Typically a declarative model, based on “fact” discovery of the server
Abstracts out the underlying implementation detail of service deployment

Both are needed to fully automate cloud application
deployment.

> MIRANTIS

Orchestration Template Languages

There are numerous templating languages out-there:
AWS CloudFormation (CFN)
Heat Orchestration Template (HOT)
TOSCA (Topology and Orchestration Specification for Cloud
Applications)
OASIS Cloud Application Management for Platforms (CAMP)
Heat natively supports HOT and AWS CFN
HOT part of the family of Orchestration languages, but
other formats can be translated before passing them to

Heat
https://github.com/openstack/heat-translator

> MIRANTIS

h //wiki. n k.org/wiki/H \ lar

There is a work on tools for automatic translation of other template languages. For
example heat-translator to translate TOSCA template into Heat DSL.

https://wiki.openstack.org/wiki/Heat/Vocabulary

Heat Capabilities

Describes the infrastructure for a cloud application - stack (deployment):
OpenStack resources: for example, servers, networks, volumes, etc..
Relationships between resources: for example, this volume is connected to this server
In a text file in the special format - template (blueprint)
Manages that infrastructure:
Automatically changes the infrastructure when the template is modified and re-applied
Deletes infrastructure when the stack is deleted
Integrates with software configuration management tools such as Puppet
and Chef:
For example: can create VM with puppet server and install puppet clients on VMs
Can pass parameters to cloud-init, etc.
Provides an Autoscaling service that integrates with Ceilometer

> MIRANTIS

Heat Architecture

Horizon Heat CLI Keystone

»
\
\

\

heat-api-cfn heat-engine

o

Database

OpenStack
services

» heat-api-cloudwatch —— Cloud resources

Message
Queues

https://wiki.openstack.org/wiki/Heat/Vision — this describes a vision, so currently it’s a
little different.

http://docs.openstack.org/developer/heat/architecture.html

Heat API

heat-api

OpenStack native REST API
heat-api-cfn

provides AWS Query API

Both communicate with Heat Engine via MQ tell it
what actions to perform

> MIRANTIS

Heat Engine

Does all of the orchestration work
Is a layer where resource integration is implemented

Contains abstractions to use Auto Scaling and High

Availability

> MIRANTIS

Heat CloudWatch API

|deologically refers to AWS CloudWatch service
Gets metrics from stacks

Is replaced by Ceilometer
Is used for Autoscaling

> MIRANTIS

10

> MIRANTIS

Heat Orchestration Template

11

Heat Orchestration Template (HOT)

» Stacks are created from templates.

» HOT is an orchestration document that details
everything that is needed to carry out an
orchestration.

» HOT has the same structure and abstractions as AWS
CloudFormation template.

» Template is written in YAML format (JSON is also
supported).

> MIRANTIS

12

HOT Definitions

Parameters
User defined parameters passed into template from CLI or GUI
Parameters include type, description, default value, hidden, and
constraints
Resources
Resources for Heat to Orchestrate
Consist of Type, Properties, DependsOn
Produce global attributes
Outputs
Displayed via CLI/GUI to identify important information of template
Full specification:
http://docs.openstack.org/developer/heat/template guide/

> MIRANTIS

Here go to labs

13

HOT Example: Version and Description

Mandatory version statement:

heat_template_version: 2013-85-23
» Heat script backward compatibility is built into the language

Optional template description:
description: Simple template to deploy a single compute instance

A very simple template:
heat_template_version: 2013-85-23
description: Simple template to deploy a single compute instance
resources:
my_instance:
type: 0S::Nova::Server
properties:
key_name: my_key
image: cirros-0.3.8-1386-uec
flavor: ml.small

> MIRANTIS

14

HOT Example: Parameters

parameters:

<param name>:
type: <string | number | json | comma_delimited list | boolean>
label: <human-readable name of the parameter>
description: <description of the parameter>
default: <default value for parameter>
hidden: <true | false>
constraints:

<parameter constraints>

parameters:
key_name:
type: string
description: Name of key-pair to be used for compute instance
image_id:
type: string
description: Image to be used for compute instance
instance_type:
type: string
<< MIRANTIS description: Type of instance (flavor) to be used

15

HOT Example: Constraints

constraints:
length: { min: 6, max: 8 }
range: { min: 0, max: 10 }

allowed_values: [m1.medium, ml.large, m1.xlarge]

allowed_pattern: "[A-Z]+[

user_name:
type: string
label: User Name
description: User na
constraints:
- length: { min: 6,
description:
- allowed_pattern:
description:
- allowed_pattern:
description:

> MIRANTIS

a-zA-Z0-9]"

me to be configured for the application

max: 12 }
User name must be between 6 and 12 characters
"[a-zA-Z0-9]+"

User name must consist of characters and numbers only.
"[A-Z]+[a-2zA-Z0B-9]*"

User name must start with an uppercase character.

16

HOT Example: Resources

parameters:
server_name:

type: string resources:
description: Name of the server my_instance:

defaule: type: 0S::Nova::Server
str_replace: \
properties:
template: stack_name
params:
stack_name: { get_param: "0S::stack_name" }

key_name:

name: { get_param: server_name }
key_name: { get_param: key name }
image: { get_poram: image 1id }
flavor: { get_param: instance_type |
user_data: |
#1/bin/bash

sudo apt-get update

type: string
description: Name of key-pair
image_id:

type: string

description: Image to be used for compute instance
instance_type:

type: string

description: Type of instance (flavor) to be used

> MIRANTIS

HOT Example: Outputs

outputs:
instance_ip:
description: The IP address of the deployed instance

value: {get_attr: [my_instance, first_address]}

> MIRANTIS

18

> MIRANTIS

Autoscaling with Heat

19

Heat Auto Scaling Principles

» Heat + Telemetry = Autoscaling

» Aodh is configured to provide alarming (i.e. set and
monitor thresholds) and to report back to Heat
Engine

» Upscaling and Downscaling scheduling groups are
created for actions
+ Core functionality is implemented in Heat Engine

> MIRANTIS

20

Heat Auto Scaling Resources

OS::Heat::AutoScalingGroup
An autoscaling group that can scale arbitrary resources
OS::Heat::ScalingPolicy

A resource to manage scaling of OS::Heat::AutoScalingGroup

OS::Aodh::GnocchiAggregationByResourceAlarm
The resource for defining an Aodh alarm

OS::stack_id
Heat “stack” identifier used as glue to tie an
OS::Ceilometer::Alarm to an OS::Heat::AutoScalingGroup

> MIRANTIS

21

Heat 0S::Heat::AutoScalingGroup

MIRANTIS

heat_template_version: 2015-04-30
resources:

the_resource:
type: 0S::Heat::AutoScalingGroun
properties:
min_size: Integer
max_size: Integer
cooldown: Integer
desired_capacity: Integer
resource: {...;
rolling updates: {"max_batch size": Integer,
"pause_time": Number, "min_in_service": Integer}

http://docs.openstack.org/developer/heat/template_guide/openstack.htmI#0S::Heat:
:AutoScalingGroup

22

Heat Auto Scaling Process

heat
stack-create

template.yaml

0S::Aodh::Alarm

An auto-scaling example:

https;//git openstack.org/cgit/openstack/heat-templates/tree/hot/autoscaling.yaml

Launch with metadata
OS:stack_id

Monitor using
metadata 0S::stack_id

23

> MIRANTIS

Customizing Guest VM

ment.ht

24

http://docs.openstack.org/developer/heat/template_guide/software_deployment.html

Configuring Software That Runs On Your Servers

Three broad methods for server configuration:
Custom image building
User-data boot scripts and cloud-init
Software deployment resources
» Custom Image building has the following advantages:
Boot speed - No need to download and install anything at boot time.
Boot reliability - downloads failure due to transient network failures or
inconsistent software repositories.
Test verification - verified in test environments before deployment in
production.
No configuration dependencies - post-boot configuration may require
agents installed and enabled on guest VM
> MIRANTIS

25

> MIRANTIS

User-data and cloud-init

cloud-init or cloudbase-init guest agents

26

Nova User Data

A special key in the metadata service that holds user data provided
at boot time that cloud-aware applications in the guest instance
can access.

nova boot --image ubuntu-cloudimage --flavor 1 --user-data mydata.file

To do something useful with the user data, the virtual machine

image must be configured to run a service on boot that retrieves
the user data from the metadata service and takes some action
based on its content.

One such application is the cloud-init system. Typical use case is to

pass something like a shell script or a configuration file as user
data.

user-data is limited to 16384 bytes.

> MIRANTIS

http://docs.openstack.org/user-guide/cli_provide_user_data_to_instances.html

27

Nova Metadata Service

The instance (guest VM) can retrieve its user data by
querying the metadata service through either the OpenStack
metadata API or the EC2 compatibility API:

$ curl http://169.254.169.254/openstack/2012-08-10/user data

This is some text
$ curl http://169.254.169.254/2009-04-04/user-data
This is some text

Note that the Compute service treats user data as a blob.
While cloud-init requires a YAML file, user data can be in any
format.

> MIRANTIS

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux_OpenStack_Platform/4/html/End_User_Guide/user-

data.html

28

The cloud-init System

An open-source package from Ubuntu that is the industry
standard for bootstrapping cloud servers (initialization on
first boot)

Available on various Linux distributions such as Ubuntu
Cloud Images and the official Ubuntu images available on

EC2.

Some of the things it configures are:
setting a default locale
setting hostname
resizing boot disk to that specified in boot flavor
adding ssh keys to user's .ssh/authorized_keys so they can log in

e MIRANTSS setting up ephemeral mount points

http://cloudinit.readthedocs.org/en/latest/index.html

29

The cloud-init Supported Formats

Gzip Compressed Content
Mime Multi Part archive
User-Data Script

Include File

Cloud Config Data
Upstart Job

Cloud Boothook
Part Handler

> MIRANTIS

30

http://cloudinit.readthedocs.org/en/latest/index.html

Using user-data in heat

resources:

db:
type: 05::Nova::Server
properties:

user_data_format: RAW

user_data:
str_replace:
template: |
¥!/bin/bash -v
yun -y install mariadb mariadb-server
systemctl enable mariadb.service
systemctl start mariadb.service

mysqladmin -u root password $db_rootpassword

paranms:

$db_rootpasswd: {get_attr: [db_root_password, \

> MIRANTIS

webserver:
type: 0S::Nova::Server
depends_on: db
properties:

user_data_format: RAW
user_data:
str_replace:
template:
#!/bin/bash -v
yum -y install httpd wordpress
systemctl enable httpd.service
systemctl start httpd.service
setsebool -P
httpd_can_network connect_dbe=1
params:

$db_name: {get_param: database_name}

31

> MIRANTIS

Server Synchronization

WaitCondition and WaitConditionHandle

32

Heat Synchronization Resources

OS::Heat::WaitCondition
A resource to create a synchronization wait point, to be
triggered by CM script

OS::Heat::WaitConditionHandle

A resource to signal condition completion. You can signal
success by adding -data-binary ‘{“status”: “SUCCESS"}", or
signal failure by adding -data-binary {"status”: “FAILURE"}

> MIRANTIS

33

WaitCondition/Handle Example

wait_condition:
type: 0S::Heat::WaitCondition
properties:
handle: {get_resource: wait_handle}
count: 1
timeout: 600

server_instance:
type: 0S::Nova::Server
properties:
wait_handle: .
type: 0S::Heat::WaitConditionHandle user_data:
str_replace:
params:

wc_notify: {get_attr: ['wait_handle’,
template:

#!/bin/bash -ex

wc_notify --data-binary '{"

> MIRANTIS

"SUCCESS"}'

34

Software Deployment Resources

Better Integration with Configuration Management System

> MIRANTIS

Shortcomings of user-data/cloud-init Model

Difficult to manage large embedded scripts
Can only run script at stack create or stack update
time
“stack update” results in server replacement if any change to
user-data text

Difficult to describe/code complex deployments with
many dependencies

> MIRANTIS

Heat CM Tool Integration Resources

OS::Heat::SoftwareConfig
To create a reference to an immutable CM script, optionally
parameterized with input values, stored in heat database

OS::Heat::SoftwareDeployment

To associated a OS::Heat::SoftwareConfig to a server. Allows for input
values to be defined and passed to the configuration.

After configuration script completes its execution, its output is
available as this resource's attributes.

Can be triggered on stack create, update, suspend, resume, delete
Update of input values does not cause server replacement.

> MIRANTIS

http://docs.openstack.org/developer/heat/template_guide/openstack.htmI#0S::Heat:
:SoftwareConfig

http://docs.openstack.org/developer/heat/template_guide/openstack.htmI#0S::Heat:
:SoftwareDeployment

37

0S::Heat::SoftwareDeployment Image Requirements

Some tools must already be installed on the glance
image being launched in order for

SoftwareDeployment to work:
os-collect-config, os-refresh-config, os-apply-config

= Collectively responsible for polling of changes in Heat and Nova metadata,

and applying the changes to the instance

heat-config, heat-config-hook, heat-config-notify
= These hooks function in relation to the "group" property of
SoftwareConfig
The "group" property is used to specify the type of SoftwareConfig hook
that will be used to deploy the configuration

> MIRANTIS

https://fatmin.com/2016/02/23/openstack-heat-and-os-collect-config/

38

Single Server Deployment Dependencies

» SoftwareDeployment resources have a "name"
property, which can influence the sort-order so that,
for example, heat-config will apply "config1" before
"config2".

» Template directive "depends_on" can be used to
specify an explicit dependency between two or more
SoftwareDeployment resources

> MIRANTIS

39

References

« http://docs.openstack.org/developer/heat/template quide/hot quide.html

http://docs.openstack.ora/developer/heat

http://docs.openstack.org/developer/heat/template quide/cfn.html

http://docs.openstack.org/developer/heat/template_guide/hot_spec.html
https://github.com/openstack/heat-templates
https://wiki.openstack.org/wiki/Heat/GettingStartedUsingDevstack
https://wiki.openstack.org/w/images/a/al/TOSCA in_Heat - 20130415.pdf

> MIRANTIS

40

Attendance and Survey

Survey link in e-mail

> MIRANTIS

41

